- CORTEX USER GROUP - -

¥

NEWSLETTER ISSUE MO- S May 1986
COMNTENTS
2 .. EDITORIAL News, future products, % new software/hardware.
3 .. BUG BYTES Froblems in Cortex hardwars and programming.
4 .. PROGRAMS CDOS modification

ZD plane plotier
Automatic NEW

10 .. USER INFD Your reguests and information sxchange.
11 .. FEATURE ‘Adding extra BASIC statements.
iZ .. SHORT TIFS Programming and hardware tips.

14 .. MACHINE CODE Fart two : Addressing modes.
i46 .. EXTRA FEATURE Generating magic sguares.

17 .. UBER’'S ADVERT

We regret that KFH Computaware cannot accept responsibility for the
contents of any letters or programs printed in this newsletter..

61

ol Ccompiauuce

ﬁ¢3’§Hfi'ﬂ|l|aiﬂﬂ3. Road, Andover, Hants. SP10 2P1

EDITORIAL . . , | -

Greetings Cortex owners, and welcome to the sixth issue of the
User ‘s Group Newsletter. In this issus we have six whole pages of
programs, another featurs by Tim Gray, part 2 of the machine code
programming article, and lots of useful 1n¥armatian. If you have any
items of interest then please send them in. We will try and publish
everything that is sent, although certain items may have to be
edited to +Fit in the available space. We are still marketing user
written software, and so if you have written any suitable programs
then send us a copy along with a +Full description, and
loading/saving instructions. We pay royalties for each copy of your
program that we sell.

We regret that we can at present only supply owr softwares on
cassette. We are in the process of installing disc drlves, and so
disc software will eventually be available. :

For those of vyou who are still without discs we are planning to
produce a replacement board for the TME?70?. The circuit has been
agreed with Neil Guarmby, and he will shortly be completing a
compatabile version of CDOS. Enquiries about this board are welcome,
but we cannot state a definite price at pressnt.

Anybody wishing to purchase CDOS or upgrade early versions of CDOS
should contact Neil Buarmby at the following address.

Neil Buarmby
? Moriston Road
Brickhiill
Bedford

NEW SOFTWARE

THE LABYRINTH OF TRAG is the first adventure game for the Cortex. In
- this text based game you have to explore a series of underground
rooms and passageways. Your aim is to stay alive by =ating and
drinking on the way, whilst looking for keys to open boxes. Your
eventual goal is to open the treasurs chest, remove iis contents,
and Find vyour way out again. The main problem is that svery four
hours the caverns flood, and so you must not be slow.

{(Price : £4.00)

Newsletter & programs will be available on a tape with the programs
to be included in newsletter 7. In this way we hope to reduce the
selling price of the tape. :

HARDWARE

We have access to most of the chips reguired by the Cortex
expansions, and would be willing to supply them to Cortex users. All

enquiries are welcome, and prices of some components are shown
below.

THMS 9901 & £5.50

TME P02 & f£6.50
™S 9911 @ £25.00
THMS 9929 @ £22.00
2797 FDC @ £36.00
74L58612 @

£2T.00

6-d

=BG E’-YTES

This section is for ironing out problems
which users experience with their Cortices.
If you have any,problems then we will be
glad to include them here. I+ you think
that vyou know a solution to any of these
problems then please let us know, and we
will pass it on.

Our problems this time start with one or two disc difficulties.

Svyd Champkin of Skirlaugh has recently fitted disk drives to his
- Cortex, but finds he is unable to fully load the CDOS 1.20 operating
system. When operating the "BOOT" command the drive loads track "00*
as normal, but when the operating system "core” attempts to load, an
error message, "Controller Error® is displayed, and the machine
aborts the search. Syd has tried changing R70 and C29 to no avail.
Can anyone offer any words of wisdom, and maybe someone local to him
could help him by checking his disk on a working system.
[S.Champkin., 14 Cawoed Crescent, Skirlaugh, North Humberside.]

- Hr.J.Stephens of Northumberland cannot save{(or load}) to tape when
using €D 1.11. Upon attempting a 1load the message "TAFE READ
ERROR" results. Any suggestions would be greatly appreciated.

C.N.Sedmell of Christchurch is having trouble with a timing related
fault somewhere around the TMS W$4500, which corrupts the RAM/VRAM on
a cold start. Again any help will be gratefully received. '

Julian Terry of Rainham would 1like som= help with a programming
problem. He has tried to use F0Z20 to store WP registers for call
routines, but upon passing more than one paramster the zrror
"ILLEGAL DELIMITER" occurs.

Finally in this section, a couple of suggestions for iﬁprnving the
quality of the Cortex display.

Hr .0.H.Hulme of Staffordshire suggests that by parting the inner and
screen of the coax cable at the aerial socket end the picture can be
"pulled” to the right. This would relieve the common problem of left
picture shift in GRAFH mode.

Mr.A.HiIliams of Sydney, Australia tells us that his display
problems were caused by interference between the power supply cables
and the disc interface cable. Hence to solve this he merely moved
the cables around within the case.

6-3

FROGRaSMS

The +following programs and routines have been sent in to us by

Cortex users. Our theme this time seems to be biased towards disc
software. We would, however, like to point out that our selection is
obviously 1limited by the type of software sent in. We welcome all
contributions, no matter how short, and will try to include as many
as possible in each issue. :

Following on From his CDOS modification in issue S5, C.H.Gale has
also sent another program, with a comprehensive explanation.

The reason for the development of this program was the occasional
overwriting of a disc. Therefore it was decided to investigate the
workings of the disc drive handler.

The disc drive handler keeps an account of the sectors in use in
the Form of a bitmap, which is stored on track 1 of sector O of the
disc. Each sector on the disc is represented by one bit in a word,
i.e.track © sector O is represented by word O bit O. A& set bit

~represents a sector in use, and a clear bit represents a free
" sector. The first two bytes represent the sixteen sectors of track O

which holds the boot file, and these should all be set. The next two
bytes represent the sixteen sectors of track 1 which hold the bitmap
and the directory, all of which should also be set.

CDOS thens +ills the disc in a sequential manner, starting from
track 2 sector O. Details of the file are stored in the directory
which starts at track 1 sector 1. The first word indicates whether
that entry slot is in use,and a zero indicates that the entry slot
is free. If the file is a program,BASIC or code, then the first word
is set to ASASH for autorun, and SASAH for not autorun. Qny other
value indicates the record size of a relative file.

The next eight bytes contain the title of the file in ASCII format,
followed by the BASIC pointers in the case of a BASIC file, or the
beginning and entry point for machine code. The word starting at
byte number 14 contains the length of the file. The word starting at
byte 32 contains the disc address +followed by the number of
contiguous blocks from that point. The next seven pairs of words are
similar and this allows the file to be split into eight different
arsas on the disc if necessary.

The program starts by displaying the title, and then asking which
drive to use. The drive number is used to index into a list of
pointers, which indicate the locations in memory where the discdrive :
parameters are stored. The parameters contained in memory include
the number of blocks per +track, the total number of blocks, the
number of files, the number of tracks, the number of sides and the
number of bytes per sector. It was decided to use these parameters
rather than fixed values so that the program will hopefully work on
all density drives.

The program then calculates the p051tzan of the b1tmap and directory
and passes this information onto the read/write disc routine. The
bitmap and directory are retrieved from the disc and stored from
location AOOOH onwards. A temporary buffer starting from location

- 7000H is cleared and another bitmap is created using the information

from the directory of the disc. A check is built in to make sure any
disc address 1nd1cated by directory entries are valid.

64

When the second bitmap has been created, it is then comparad with
the actual bitmap Ffrom the disc, with any discrepancies being
listed. If any a discrepancy is found in the bitmap for the bootfile
or the directory track, the bitmap on the disc can be set to all
"ones" using the disc inspect utility. If a discrepancy is found in
a File, then the best course of action is to copy all of the files
to a new disc using the "filecopy” utility.

7100 START: LWFI >FOZ0

7104 MSG @>7000 print title

7108 DRIVENDO: M™MSG @x7016 print "which drive"
710C EKO R1 - get drive number

710E "ANDI R1,>0FC0 mask ASCII

7112 MoV Ri,R2 »

7114 SWPE R2 . put in lower byte

7116 5LA RZ2,1

7118 MOY @>6=Z82(R2) ,R3 pointer to drive

71i1icC MOV *R3I+, R4 blocks per track

711iE ‘ mMayv *R3+,R? total number of blocks
7120 MOV rR9,8>70FE

7124 g INET RZ

7126 - MOV *R3,R12 number of files

7128 CLR RB

712A - MoV ax>5372(R2) (R3 pointer to drive

71Z2E MoV @x>000468(R3) RS number of sides

7132 MPY R4 ,RS

7134 DIV Ré&,RE number of tracks

7136 MOV @>6362(R2) R3S bytes per sector

71ZA MPY R3,R4 ycalculate disc address
713C MOV RS,R2 Yof bitmap

713E MoV RS ,R4 no. of bytes to transfer
7140 LI RO ,.>0000 ' ,

7144 LI R3, *ACGO0 actual bitmap buffer
7148 BLWF @3>6180 : get bitmap % directory
714C MOVB RO,RO . check status

714E JEQ oK1 ’

7150 B @>4550 print error message
7154 OKl1: LI R1,>3000

7158 AGAIN: CLR *R1i+ clear buffer

715A C1 R1, >A000

715E JINE AGAIN

71460 LI . R1, >32000

71464 SETD =R1+ set bits for bootfile
7166 SETO *R1 set bits for directory
7188 Al R3, >0080 ' ’

718C NEXTFILE: mOv *R3,*R3 get file directory
718E JEQ NEXT no file?

7170 Mov a@x0022(R3) R4 number of blocks

7174 MoV @x0020(R3) ,RS disc address

7178 ' JE& NEXT
- 7174 MoV RS,R&

717C SRL R&,4 A

717 c R&6,RB S is it valid disc address?
7180 - JLE oKz , :
7182 M56 @x>7028 ' print "invalid address®
71846 JMF BADADD o o

7188 0OK2: MoV R&,R2 calculate which block
718A SLA RZ,1

71i8C ANDI RS, >000F

71290 4 CLR R&

6-5

7192 Al R&, »BO0OO
7196 MoV RS5,RS
7138 JEQ SETBIT
7194 MORESEC: SRL R&,1
71i9C DEC RS
719E JNE MORESEC -
71A0 JMF SETBIT
71AZ MOREBLOK: SRL R6,1 '
7144 JINC SETBIT
71A6 INCT RZ
71A8 LI R&, #BOOO _
71iAC SETBIT: A R&, 85000 (R2) set bit in map
71RO DEC R4
71iB2 JNE MOREBLOK any more blocks?
71B4 NEXT: Al R3, »>0040 next file entry
71iE8 DEC R12 any more files?
71EBA JNE NEXTFILE
71BC LI R1, >AC00
71C0 LI R2,>9000
71C4 MOV ax>7o0FE,R3
71C8 - 5RL R3,4
71CA c *R1+, *R24+ compare actual to
7iCC JEB OoK3 calculated bitmap
71CE MSG ax7044 bootfile error
71D2 0OK3Z: R - *¥R1+,®*R2+ ‘
71D4 JER Ok4
71D&6 MSG. ax>70b6b directory error
71DA 0OK4: DECT R3
71DC NEXTBLOK: C *Ri+ , *R2+
71DE JE& 0OKS
71E0O MSE @>7088 file error
71iE4 DES: DEC. R3Z :
71iE6 JNE NEXTBLOK
71E8 ANDTHER: MSG6 @x70A6 ask if another disc
71EC EKD RI '
71EE CI R1,>5900 yes’?
7iF2 JE@ DRIVENDG.
71iF4 CI R1,>4E00Q
71F8 JINE: ANGOTHER
71FA B - @>0080 back to monitor
71FE DATA O '
7200 BADADD: MOV R3,Ré print file name
7202 LI RO, >0007 with bad address
7206 INCT Ré6
7208 NEXTCHAR: MOVB *R&+,R7
7204 WRIT R7
720C DEC RO
720E JINE NEXTCHAR
210 JMP NEXT
The next program is by J.#.Terry ,and is a 3D plane piotter.

Although we
different

in- that

have already featured

a 3D graph program, this is

it produces an image with hidden lines ommited,
thus adding to the 3D effect. There is also the facility to call a
suitable screen dump routine, such as previously featured in the
newsletter. The program is written entirely in BASIC, and shows the
computing power of the Cortex.

1000
1010
1370
1410
1420
1450
1480
1500
1510
1520
1570
1540
1550
15460
1570
1580
1590
14600
1610
14620
14630
14640
14650
18660
1670
1680
1730
1740
1750
1760
1720
1800

1810

1820

1830
1840
1850
18560
1870
1880
1890

1300
13910
1720
1930
1240
1950
19460
1970
1980
1790
2020
- 2030
2040
2050
20560
2070

REM #*% 3D PLAME PLOTTER #*%

REM #% BY J.M.TERRY **

REM % Initialisation *

FI=3.1415926536 fDEFINE PI

DIM $FUNLC223,UPYL25531,LYL255] /DIMENSION VARIABLES
REM = Command level * i 4 -

TEXT

FRINT * ZD PLANE.FLOTTERY

PRINT

SO5UR 2090 JGET INPUT DATA

GOSUR 1680 fPELOT THE GRAPH

PRINT @(0,23);"Do you want a screen dump?{(Y/N)"j
IMNPUT #1;FINP £ READ IN ONE CHARACTER

PRINT @{0,23);" »- " /CIEAR 5.D.HESSAGE
IF'$INP=“Y" THEN GOTO 1600 ' ‘
IF #INF="N" THEN BOTO 14610
GOTO 1540 FGET A VALID INPUT
GOSUER 1960 /DURP SCREEN T8 FRINTER
TEXT '
FRINT "Do you want to plot another {unctlanﬂiY/N)"-
INFUT #1; FINF
IF #INF="Y" THEN BOTO 1490 /RESTART PROGRAM
IF $INP="N"™ THEN GOTO 1470 JEND PROGRAM
GOTO 1620 '
END '
REM * Plot graph routxne *
GRAFPH
FOR A=0 TO 255 /FILL YPPER Y LIHIT HITH i91 TG ALLOWH PLOTTIHG
UFRYLAI=121 '
NEXT A
FOR Z=5 TO WID+& fZ—AXIS COUNT FROM HEAR TG FAR
FOR X=5 TO WID+& /X—-AXIS COUNT ACROSS SCREEN
REM LINE 1820=0NLY PRINT IF CORRECT LIME POSITION REACHED AND
AND DIRECTION SELECTED '
IF {DIR<>»90)%(MODL(Z-5} ,DNNI=0) OR (DIR *B88% (MODL (X-5) ,DNNI=0
} THEN GOTO 1830
VZ=LZ+{(Z-5)%(UZ-LZ) /WID: VX=LX+(X—4)*XUX—LX)KNID IVIRT. X,2
PTX=X+Z*#ZTX /PLOTTING VALUE OF X
Y=FNALVX,VZ1 fGET Y VALUE AT X,Z CORRECTED FOR VERTICAL TILT
GOTO 1870
IF ¥Y<LY OR ¥Y>UY THEN GOTO 1930 /OFF SCREEN POINT NOT PLOTTED
PTY=18&4—-18B&/7 (UY-LY)* {Y-LY) —Z*ZXV /GET PLOTTING VALUE OF ¥
IF PTY>LYLPTX1 THEN LYLPTX1=PTY : GOTO 1710 /IF POINT IS
VISIBLE BELOW ANY POINT ALREADY THERE, THEN PLOT IT
IF PTY>UPYLPTX1: GOTO 1930 /IF POINT HIDDEN THEN DON'T PLGT
FLOT PTX,FTY FRLOT POINT ON SCREEN
IF PTY’UPYEFTX} THEN UPY[PTXJ-PTY fSAVE IF NEW LIHIT
NEXT X
NEXT Z
RETURN
REM * Scresn dump *
REM
REM Call your scraen dump routine hers
REM
PRINT “"The function : F(X,Z)="3;$FUNLO;191
PRINT “"X-range is "3;LX3;" to ";UX
PRINT “"Z-range is "3;LZI:" to "3;UZ
FRINT "Y—range is "jLY:;" to "j;Uy¥
FPRINT "Vertical tilt is ";ZXV¥
FRINT "Side tilt is "3;I7X

67

2080 RETURN

20720 REM * Data input routine *

2140 INPUT "Flease give a function of Y in terms of X and Z<0A><0Ax»
<OD>"3FFUNLO] 7IRPUT FUNCTION

2150 REM * Get max and min axes values * .

2160 FPRINT "<OA»<0A*Please give the value of"

2170 INPUT " lower X :z"3;LX;" upper X :";UX fGET X COGRD RANGE

2180 INPUT " lower Z :";LZ3;" upper Z :";UZ IGET £ COORD RANGE

2190 INPUT " lower Y :"3LY:" upper Y :%3UY SGET ¥ COORD RANGE

2200 INPUT "<DA><{DA>Please give side tilt O to 1:"3Z7TX

2210 INPUT "<OA>{0OA>FPlease give vertical tilt O to 1:";ZXV

2220 PRINT "<0A><0A>Do you want lines in both X and Z directions?"

2230 INFUT #1; "I+ yes then enter Y, else enter X or Z";#DIR

2240 DIR=ASCIL$DIR] ,

2230 IF DIR<>88 AND DIR<>BZ AND DIR<>%0 THEN GOTO 2220

2260 INPUT "<{OA>How many lines do you want in each direction (1 to 3
07} "3 DEN v

2270 #FUNLO; 11=/"2290 DEF FNALX,Z1= *© FCREATE LINE STRING.

2280 ENTER #$FUNLO1] JENTER LINE INTO PROGRAM

2290 REM # This line is replaced by the ENTER command #*

ZI00 WID=245/(1+ZTX) SCALCULATE X PLOTTING DISTANCE NEEDED _

2310 DNN=INTL(WID)/(DEN-1)1 /CALCULATE SPACE BETHEEN PLOTTED LINES

2320 WID=DNN*DEN-DNN /APJUST WIDTH 580 THAT ALL LINES ARE PLOTTED

2330 RETURN

W.D.Eaves sent in the next program and the following exﬁlanatiun of
what it does.

Some programs which use BASIC and M/C require that the NEW command
is wused to load the BASIC at a higher address. so that when the M/C
is loaded it will not overwrite the BASIC. Examples of this are the
games PENGO and FIREBIRD. On the tapes the NEW address is shown as
part of the 1loading instruction. However, if such a program is
transferred onto a disk then there is no written instruction and the
program can be loaded without first typing NEW xxxx. Obviously the
program will not work as the M/C will overwrite the BASIC. Even
typing NEW xxxx does not overcome the problem as the BASIC checks a
location to see if the M/C has been loaded. However, if the BASIC is
at the default address then this check is sometimes fooled by
reading part of the BASIC program, and the M/C will not be loaded.

The following example shows how a program can be loaded at any NEW
address, and if it is not correct will reload the program at the
correct address. The default NEW parameter is unaltered so that when
the program is finished the original NEW address will be selected
just by typing NEW. :

Memory location EDO4 contains the address at which a BASIC program
will be loaded <{This is the NEW address + 14H}. Location EDO&
contains the xxxx specified by NEW or the default address. Thus by
checking the value of the word at EDO4 and modifying if necessary, a
program can be loaded at the correct address. (see line 6 in the

example). Not altering the word at EDO& leaves the NEW default value
intact.

If the word at EDG4 is not correct then the program goes to the
subroutine shown in the example at line 800G0. This routine resets
the check 1location to zero (line BOOS), and then reads data %o

6%

,
assemble the M/C shown in the example below the BASIC. I+ the M/C is
assembled at &090H then the first four data lines in the BASIC are
valid in all cases except the data for the BASIC address marked #*.
The last 1line contains the program name, in this case FENGO
terminated by 00. {(see the routine on p.3 of newsletter I1I by Tim
Gray.}) The branch +to OF18 at 4098 initialises the BASIC memory at
the new address.

Flease note that this routine works only with disk drives as it uses
part of the CDOS software, and in any case would be incapable of
rewinding a tape! However, the memory check at line S and the
message at line B0OO cam be used with any data storage medium.

EXAMPLE OF AUTOMATIC “NEW-'

4 MOTOR © . - R

S5 IF MWDLOEDO4HI<»09014 THEN BOTO BOOO Jcheck BASIC start address
& IF MWDLO7810H1 THEN GOTO 30 /check if M/C loaded

8 COLOUR 1140 ,

8000 7 "J{OC>You forgot to type "NEW xxux ' ":7?"I1°11 do it automaticall
y! n ‘

8005 MWDLO7810HI=0 /set to ¢ as W/C not locaded

8050 READ C1,C2: FOR I=C1 TO C2 STEP 2 fassemble H/C

8052 READ C: MWDILII=C: NEXT 1 :

8053 CALL C1 ‘releads program at newm address

BOS4 DATA 6090H, &0AEH '

B0S& DATA 5173, 9014H*T —-14335,-4840

B0OSE DATA 1696, 504, 1217, S5i4

BO&LO DATA 24746, 523, 128, 1120, 26017

BOSZ DATA 20547, 2003%, 20224 /program name

MACHINE CODE TO RELOAD PROGRAM

56090 LI Ri,}9014* fset BASIC start address

&094 MOV R1,@>EDO4

6098 BL @>01F8 - fexecute NEW, default Ieft intact

&0%C CLR R1

&609E LI R2,>60AA faddress of program name start

&0A2 LI R11,>0080 fload progranm

&0As6 B 8x4657C .

&0A8HA DATA >5045 FASCII codes of program name, OO terminated

&0AC DATA »>4E47
&0RE DATA *4FO00

Well that’s all for this issue. If you have any interesting programs
or routines that you would like published, then please send them in.
We would ask that you also send a description of the way in which
the program works, so as to help other users.

The programs published in this issue will be available on tape.
Flease see page 2 for details.

USER InNFDO

John Mackenzie has written recommending the ‘COMMTEX ™ communications
- package by MARKRO S0FT. It is very flexible and written/structured
in such a way that makes it very adaptable by the user. For users of
WORTEX, there is a special version of COMMTEX which receives and
sends WORTEX pages. John will supply this free to any Wortex user
who sends him a disk with Commtex on it. {(As proof of purchase of
Commtex.)

John also informs us that version 1.5 is now available. To g=t an
updated copy send youwr original Wortex disk back to him.

For those of you who are new to the user group WORTEX is a complste
word processor (disc based) for the Cortex. For details write toj
John Mackenzie,4 Werston Close, Malvern, Worcs. WRi4 3ZNH

COMMTEX is available from; .
P.Roey 53 Broughton Road, Croft, Leics. LEZ &ER

Phillip #Harsden from Leeds wrote in search of some information. He
has bought the memory card from MPE, and plans to make a
hal f—megabyte board. He has thoughts about a RAM disc routine to
allow +aster disk access, and wonders if any other users have
already achieved this.

In addition to this, he would like to produce an BC column screen
output, and would 1like any relevant information on the screen
output.

If you can help with either of these requests then we will be glad
o pass on information.

Ladislav Vig of BSwitzerland wrote to us asking if aryone else is
using the MDEX software. He would like to exchange some information.

A.R.C.Badcock wrote +to exupress his praise for CDOS, particularly
because it is easily modified, and well supporited by its author,
Neil Guarmby. He also uses the MDEX system, and asks the following
questions;

1} Has anyone a utility to read and write to CDOS discs from MDEX,
or to transfer files intact {like "RDCPM’ does for the MSDOS) 7

2} Has anyone a utility to read and write to cassettes whilst in
MDEX, so that I can tape software for safer archiving.

3} Has anyone a fix for the bug in the MDEX BASIC interpreter that
prevents the S5AYEX command from saving compiled code. The
interpreter recognises the first 4 letters as a SAVE command
which it rejects as socurce is no longer prresent. Although the
BASIC is a simple one,. it would be useful if the compiled
feature could be exploited. Perhaps the command table could be
patched to rename the command 7

610

FEATURE : ADDING EXTRA BASIC STATEMENTS (By Tim Gray)

BASIC statementis are stored in memory in encoded form. When entering
BASIC program lines,a check is made to see i+ the statement sntered
is included in a table during the normal syntax checking procedure.
When the name is found, its position from the start of the table
becomes the token in the program. Now when the program is running,
this token 1is used to access a routine start address in another
table, and a branch made to the start address of the statements
routine. . -

Having said all that,it’'s possible to add extra statements by adding
extra names to the name lookup table, and start addresses to the
start address table.

As some statements have more than three letters there are actually
two name tables, one for the first three letters and one for the
rest of the name. A list of all the tables is included. Note that
this 1is the list after loading CDOS, and includes some changes and
extra words used by the file system.

The first table for the name starts at JF0Z20H,and is a 16 bit word
table encoded as follows:-—
bit © ‘ bit 135
QQOO0 Q0000 00000 O . .

) H H if set then this name has more than 3 letters
H ——— ascil code for ist letter
| ————— ascii code for Znd lestter
ascii code for 3rd letter

- - e we

I+ the LSE of the word is set to one,then the second name table is
used to encode the second part of the name. This second table starts
at 3ADAH. The start address for the routines are in a table starting
at 3FCCH. DOnce yowr new statement,name and start address is included
in these tables, any program can use them.

When the program comes across your new statement it will branch to
the routines start address. This is a direct branch so yvour routine
must preserve some of the registers, s=specially RB and RiS. On
completion, vyour extra routine will have to branch back to a
location to continue running the BASIC program. This branch back
address is different depending on the type of parameters used. I
don't know all the rules for this part of BASIC, but I have found
that some retwn addresses are 3IFZC 3IF30 3F34 stc-you will have to
experiment. ' '

» Also included in the table lists are the tables for functions and
some more three letter statements. ‘
STATEMENTS

ADR1 WD 1 ADRZ WD Z TABLE SADR NAME

FAZE AZCF ZADA OO0LE 3IFCC 24FC GOTO
FAZ0 PBCF ZALDC 00AA 3IFCE 2500 GOSUEB
3A3Z 9BOB FADE O00A IFDO 3FDO ELSE
JAZ4 &264 IAEC 4700 IFDZ2 3F3I4& REM
3A36 P00 3AEZ FFBO 3IFDA 2146 FOR

&l

STATEMENTS

ADR1 WD 1 ADRZ WD 2 TABLE SADR NAME
JAZB 0000 FTAE4 0000 IFD& 2772
IAZA A049 3AEL 0002 ZFDEB 3IFZ46 DATA
ZAZC CISD ZAEB 0028 3FDA 2240 NEXT
FAZE 7488 TAEA O04%E IFDC 1EA4 ERROR
ZA40 4CA1 ZAEC 051C IFDE ZABE FRINT
IA4Z 4047 ZAEE 0018 3FEC 1FIE CALL
ZA44 oBDT EAFO 0008 3FEZ 4580 LOAD
3A4& BIFI 3AF2 052A 3FE4 262E INPUT
IA48 09465 ZAF4 0008 IFES 2ZCFA READ
3A4A 9965 ZAFS6 F3EE8 IFEB 2D34 RESTOR
IZA4C ALlLS ZAFB 74AA IFEA 256C RETURN
IA4E T7DET7 FAFA 0020 ZIFEC 1EZ0 STOFR
JAS0 4BAB JAFC 0028 IFEE 3Z1E4 UNIT
SADSZ LALTF IAFE 000A IFFO 3I13C TIME
IAS4 BO&7 3IBOO 000A IFFZ &790 SAVE
IASA 9845 3BOZ 000A 3FF4 1FB4 BASE
JADSE 1CCE 3B04 2002 3FF6 2138 ESCAFE
IATDA ZBDD 3806 00E4 IFF8 213E NOESC
FASC 7045 ZBOB 4BEB 3FFA ZCYE RANDOM
FASE ABA45 3IBCA 0008 3IFFC 01464 BAUD
ZA60 AZBB IBOC 048A IFFE 20F& ENTER
SA6Z 7BI1 ZBOE 0028 4000 5i4Z2 PLOT
IA64 BIAB 3IR1O ASDE 4002 S13IE UNFLOT
Aa6d &3IC7 3IR1Z ?55E 4004 1ADE COLOUR
IA6EB 7561 3ZBi4 O14E 40046 ZBFC PURBE
3A6A OCBF 3B16 0Z20 4008 1AB4 GRAFH
3ALL C1469 3ZEIB 002B 4004 1A7E TEXT

" ZA6E 4846F 3IB1lA 002ZB 400C LBS® WAIT
JA70 OAC0T7 3IBIC 0024 F00E 1ABE CHAR
SA72 6D5SD. IBiE 7144 4010 ZICC NUMBER
JA74 A5T 3B20 0028 4012 3CoA LIST
JA7&6 71465 IEHZZ 0564 4014 ZD7B RENUM
ZA78 7427 IBZ4 2D12 4016 1BYE SPRITE
ZA7A OAZ7 IB2é6 0160 4018 1B&A SHAPE
FA7C AC27 3IBZ28 0028 401A 19FC SPUT
SA7E ZFE7 IB2A 0028 401C 1992 SGET
3ABO 7BLTS 3B2C 0028 401E 321iA BOOT
ZABZ ODE7 3ZIRZEE 00Z0 4020 3348 SWAF
FAB4 7BO7 3BI0 0102 4022 173A CLOAD
IAB& AZDER 3B3ZZ 04%9E 4024 1856E MOTOR
FAB8 OCCT 3ZB34 016C 4026 4540 CSAVE
FABA 2CIF 3IBI46 00IC 4028 6A00 OFEN
SABC 7807 IB3B 01646 4024 4900 CLOSE
ZABE AL4E IBZA 0000 4020 &AEOQ BET
FAF0 AGS0 ZE3IC 0000 402E LAE4 PUT
FATFZ 0000 IBIE 0000 4030 0000
FAF4 G000 ZB40 0000 4032 0000
3AT4S& 0000 IB4Z 0000 4034 Q000
FATE 0000 3B44 0000 4034 0000
FATA 0000 3B4S4 0000 4033 0000
FATFC 0000 IB48 0000 4034 0000

61

A MM we met e S e BN e MM e MR e MR ke 6 e S e M e M e M e MM s S e mm W e W e W e MR e M emar W6 ek R e MmN mees MR e e W e e e e OB

2 LETTER STATEMENTS

ADR1 WD 1 TABLE SADR NAME
3A%E 3B5A 403C 1BFA MAG
IAA0 I3IES 403E 3IIDE TOF
ZAAZ 73EB 4040 3IiDé TON
ZAA4 B3IED 4042 259C FOP
ZAAL LA4S 4044 2032 DIM
ZAAB Al1SB 4046 2772 LET
IAAA 0000 4048 ZAERS

3IAAC 73CO 404A 2Z9FA ON
IZAAE 3240 404C 2SAE IF
ZABO F148 404E ZOOE DEF
ZABZ BYSC 4050 OICE NEW
IAB4 Z38BA 4052 1EZA END
3A4RB& 0000 4054 2AES

IABB 0000 40546 LE40

3ABA A244 4058 4E4A BIT
3IABC 1486 405A 1FA4 CRE
IZABE 3486 40SC IFBC CRF
ZACO &95A 405E 2908 MEM
ZACZ 25DA 4060 299E MWD

FUNCTIONS

3IB4A $B8Z 48CA 24466 ABS
IB4C 91i0C 4BCC 29C8 ADR
IB4E ICCZ 48CE 2936 ASC
IBS0 7502 4BDO 1BE4 ATN
IBSZ YBCG 48D2 S3446 COS
3B54 8460A 48D4 4AZ8B EXP
3BS4 OCBC 48D6 2A%4 FRA
ZBS58 A3SYZ 48D8 2440 INT
3IBSA 3IBDS 48DA S0S56 LOG
IBSC C956 48BDC 2482 EKEEY
IBSE 724& 4BDE S535A SIN
IR&O F446 48BEC S3IES SER
IBLZ FELA 48EZ 241C S5YS
IR&4 1AGE 4BE4 3128 TIC
3B&G 7136 4BES 3IOIE 56N
3IB&B AZ44 4BES 4ESE BIT
IBLA 1486 48BEA IFEE CRE
IR&Z2 3486 4BEC IFC4 CRF
IBAE &9SA 4BEE 2924 MEM
ZBR70 Z5DA 4BF0 2Z9B3 MWD
3B7Z 7158 48BF2 IF7C LEN
3IB74 40DA 48F4 1FGE MCH
IB74 9BEO 48F5 1F3A FOS
3IB72 &43C6 48F8 1RiA COL
IB74 23IDA 48BFA 24CE8 MOD
IR7Z E3Ca 48FC 6918 EOF
IB7E 0000 48FE 0000

ZBBC 0000 400 0000

IB8Z2 000G 4902 0000

SHORT TIirs

The first tip this issue comes from A.R.C.Badcock , and is concerned
with the RBB interface circuit. Upon building this board it only
gave out black. To solve this he adjusted the biasing of TRS, TRiZ,
and TR1&6. To achieve the correct colour balances he changed RZ3, R37
and R48 to 1KO.

Mr.Badcock would also like to warn users not to do the "3.3K FREE
RAM" mod, as this is a non—reversible alteration. By installing the
memory mapper chip, with no PCB changes (other than removing links)
all 4K is accessible under software control.

Prem Holdamway is one of our newer members from London.He has been
going +through the older newsletters, and has this suggestion for
correcting the lower case data from issue 2 (Andy Kendall's jetter).
Line B0 should read; ’

80 DATA 3,-28087,8942,7,44673,1024,3,-28624,9984,16655,4161,8960

Bill Eaves has two tips about CDGS. In issue 3 page 5 there are some
suggested modifications, which do not apply to CDOS 1.2. This
version already has an auto—-load facility which loads a file calied
AUTOEXEC #rom the BOOT command. The routine which performs the
auto—Ioad is situated at &6740H. I+ users of CDOS 1.2 wish to load
filenames of there own choice the hex ASCII codes should be entered
at 63I8H to 693EH. If a filename of less than 8 characters is used,
it should be terminated by OOH.

Bill also informs us that certain programs will not work properly
after CDOS has been loaded. The problem is that some programs were
written before a way was known to correct the COL function, checked
pixels for the latest foreground and background colours. CDOS
corrects the fault seo such a program checks for the wrong colours !
The simplest way <{though perhaps not the most elegant’ is to sest
location 1Di2H to EE9SH which is the value when the Cortex is reset
or switched on. Remember to change the the value back to F1Z0H when
the program has finished. CDOS 1.2 performs the COL correction at
location 69EEH. »

Juliar Terry tells us that printing character 10H will stop the
cursor from being piotted. Unfortunately there is no way of getting
it back without clearing location ED&AH, as reported by Robert in
newsletter 2. S

John Hackenzie has a number of points to make about CDOSB.

1} Th= AUTOEXEC program is useful for holding all the iittle mods.
and dsbugs to BOOT the Cortex as you require. Here is & liittle bit
for you to add to it.

wwxx BAUD 2,1200 : BASE 0O30H
vyyy CRBL143=1 : CRFLBI=02Z3H

613

This will sat up the RSZ3Z port to 1200 Baud, {or amend to suit your
printer) and 8 bit. This allows vyour printer to print ail the
characters above ASCII 127. Now when you want the printer just type
UNIT 2. Retype BAUD Z,1200C tB reset to 7 bit. :

2}y CDOS doges not have a system D%_marking /8 sectors on the disk
directory during formating. @& method of doing this comes from the
way CDOS saves the files to disk. If during a SAVE to disc you get a
persistent disk error {ie a sector is faulty), the system will have
already updated the directory. If you rename that file RUBBISH, then
when next you save to that disk the bad sector is not used. I you
are very clever vyou can identify the offending sector, and save a
very short program over it.

3} With reference to the AUTOLOAD program in issue 5, if ydu amend
the 1listing as follows then all files will be listed on the screen
with no scrolling if the directory is long.

If you call this program AUTOZ, then add this last line to your
AUTDEXELC program:

uxxxx LOAD D,"ﬁUTD”"
Now change these liness

40 P73 Auto file laaﬂ from disk 1":7
210 D=1

Save this prngram‘as AUTO3. Now copy AUTOZ and AUTOS on to all your
disks. Remember to amend line 2030 for esach disk.

MoSCHINE CODE FROGERAMMING

- £23 Addressing Modes (by Kevin Hoelloway)

In part 1 we dealt with moving data between registers, and
incrementing/decrementing. registers. We will obviously want to
access data in the main memory as well, and there are a number of
ways of doing this. These are called addressxng modes, and the main
ones will be discussed in this article.

We have already seen an example of immediate addressing , where a
register is loaded directly with data (eg LI Ri,>1234). We have also

seen register addressing , where another register holds the data (eg
MOV Ri1,RZ). : '

The next mode is register indirect'addressing_, A register holds the

address at which the required data is stored. Thus if memory
location 7000H contains our data, then we can load it into R2 by:

egl) LI R1,>7000 fload RI with 70004
MOV *R1i,RZ2 fCopy the data stored at the address in RI
’ fintoe RZ '

The resgister RZ2 wiil now contain a copy of the data stored at

iocation 7000H. The # indicates that the content of R1 is an address
at which the required data is stored.

61l

&

In the above example it would have been simpler to use indirect

memory addressing . In this mode the data is loaded directly +From

MEMOIY .
eg?) MoV ax7000,R1 {Copy the data from location 7O00H into RI
The @ sign indicates that indirect addressing is being used.

Do not be worried i+ there seems to be so many ways of doing the
same thing. Once each of the addressing modes is understood, you
should be able to see that esach one has its own particular use in
different types of program.

if we want to use many related data items, say for example, a list
of coordinates, then we will probably want to form a table of them.
To do this we use indexed addressing .This is best iliustrated by
another example.

egq3) memory location 7000H ——> | datal |
7001H ! datal i
70024 1 data2 i
7003H 1 datas i
7004H { datad

To access one of the entries we could just calculate the relevant
address, but it is easier to use the start address (7000H) as= a

reference, and a register as an index pointer. Thus to load data3

into register RZ we would do the following;
LI Ri1,3
MOVE @>7000(R1),R2

This copies the data from address 7000H+R1(=3), [ie 7003H1, into RZ.
“As an extension to the register indirect addressing, we may want to

access several data items which are stored sequentially in memory.
This may be achieved by using auto—incrementing .

egd) MOV *R3+,R2

The plus sign following RE indicates that the contents of the
register are to be incremented by two immediately after copying the
contents of the address in R3 into RZ2.

I+ R3=7000H, and the location 7000H contains the value 1234H, then
after executing the above instruction, RZ=1234H, and R3=7007H

So far we have only discussed ways of moving data from one place to
another (excluding increment/decrement). In the next issue we will
move on to look at how we can perform logical operations and simple
arithmetic. If there are any points which you would like covered in
more detail, then please write and let me know.

{;45

EXTRS FESTiieE (MAGIC SUGUARES ”

On our newsletter program tapes we usualliy include a short feature
BASIC program written by our staff. There are many interesting
mathematical problems which can be solved numerically, and therefore
ar2 suitables material For programming. It was our intention to
market a series of such programs, but it was decided that it would
be more useful to print separate articles in the newsietter.

This program calculates and prints out odd magic sguares using very
simple rules. Any size of square is possible, although the screen
size restricts the display to a 9%F sguare. The method of generating
even magic squares is a 1little more complex, and so will not be
shown here. ‘

For those of you who do not know, a magic sguare is guite simply a
square array of numbers 1in which every row, column, and long
diagonal adds up to the same number. (see fig.l} ‘

8 1 b4 fig.1 every row,column and long diagonal
3257 adds up to 15.
4 7 2

The method of producing an odd magic square is guite simpls. You
start off by filling in the middle slement of the top row with a 1.
You then procesed to move diagonally upwards to the right filling
in successively 2,3,..2tc.(MB imagins the sqguars to wrap around
itself. is if vyou moave off the left side then you must rejoin the
right side.). I+ vyou come to a square which is already filled in
then you move down two, lett one and continue as befors.

10 REM ODD MAGIC SEUARES

15 TEXT :
20 INPUT "HOW MANY NUMBERS TO A SIDE (ODD)?"3iN 7
IO MN=INTLOMIzIF INTON/Z2I=N/Z2 : BOTO 20 ! make sure N is int & odd

40 DIM SEIN,N]
S0 FOR I=1 TO N
&0 FOR J=1 TO W

7o Sari, Ji=o ! clear a3ll elements of square
BO NEXT J ' ‘
FO NEXT I

100 I=1+INTIN/Z21:d=1 ! set 1,7 to middle oFf top rowm

105 8GLI,J1=1 ! set this element to i

110 FOR C=2Z TO N=N ' rest of elements

130 I=I+1il:J=J-1 ' move diagonally upwards and right

140 IF I>N THEN I=I-N ! allow Tor wmrap—arcund

145 IF I<1 THEW I=I+N

130 IF J<1 THEN J=J+N

155 IF JdxM THEN J=J-N ' ‘

160 IF SRLILJI1<>C THEN J=J+2:1=I-1:50T0 140 ! i¥ new position fulil
then move down two, Ieft ore and trv agalin

i85 S8ELI,.Ji=C ! newm position empty, s0 set to count valus

170 NEXT C '

175 REM PRINT HMAGIC SQUARE

180 FOR I=1 7O N

190 FOR J=1 TO N

200 TE{(IE) , (I%233;8601,33

210 NEXT J

220 NEXT I

6-16

HORTE:

Thiz iz a Word Proczssor for the Cortex. It runs woder QDDS
1.28. The sastem runs using Twin 40 track 51n?1e zided
2indle density disk drives. Operation with one driwe can be
Ao,

MODEZ 1. InPut text
2. IwnPut pase from dizk
3. Rebturn inPut btext
4. Yiew disk pa3le
5. Sawve Paze to dizk
&. Print pacs-/pages.
7. SP2lling check Yreduires SPeltex)

FUMCTTOMS
o Text inPut with full character edifiing
» Page formating with:

3. Auto Page number

k. Center tewt oPfion

. Right justifs option

d. Autn left Justification

e. Lzft margdin control

.. Right margin conkbrol

2. Auto return

he. Word: wrap

ie 15 Tab markers

o Page lenoth contral

k. Paos editting
. CoPy from disk Page &0 memory Pase
4. Ml Pagfe Printing

15.8@ Plus & T1-/4 blank disk
SPELTE

[+

The: spelling: checker for Wortex. This runs under COOS 1.20.
The: system uses. twin 4@ track single sided disks with drive

“@” Single Density: and drive “1’ Double Denzity. (MOTE onlw
the: most recent: version CDOS 1.20 suPports Double Densitu.’,

This. {s a must for Wortex users. Comes with about 7899 words

and:thevdictionarsacam,QOEquto?around,zaﬁaa'wardsu
MODES l.. Check Page sP2lling

2.. Edit the Dictionary-

3. Return to Wortex

4, Correct ervrors

FUMNCTIONS |
1. View the errors.
2. Correct the errors
3. Store the srror word in the dictionary
4. Add words to Dictionary dirrect from kedboard
S. Deletes words from the Dictionars

£ 18.09 Plus two S1/4 DD Disks ko

S MackermTios
<4 Lkler-stan C1leo=
Ma 1vwrasrnm
LiIFR1 <4 =

call @6845-€5613% eveningz

- | 6-\7

